Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
CNS Neurosci Ther ; 30(3): e14649, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38448295

RESUMO

BACKGROUD: Glioblastoma multiforme (GBM) is among the most aggressive cancers, with current treatments limited in efficacy. A significant hurdle in the treatment of GBM is the resistance to the chemotherapeutic agent temozolomide (TMZ). The methylation status of the MGMT promoter has been implicated as a critical biomarker of response to TMZ. METHODS: To explore the mechanisms underlying resistance, we developed two TMZ-resistant GBM cell lines through a gradual increase in TMZ exposure. Transcriptome sequencing of TMZ-resistant cell lines revealed that alterations in histone post-translational modifications might be instrumental in conferring TMZ resistance. Subsequently, multi-omics analysis suggests a strong association between histone H3 lysine 9 acetylation (H3K9ac) levels and TMZ resistance. RESULTS: We observed a significant correlation between the expression of H3K9ac and MGMT, particularly in the unmethylated MGMT promoter samples. More importantly, our findings suggest that H3K9ac may enhance MGMT transcription by facilitating the recruitment of the SP1 transcription factor to the MGMT transcription factor binding site. Additionally, by analyzing single-cell transcriptomics data from matched primary and recurrent GBM tumors treated with TMZ, we modeled the molecular shifts occurring upon tumor recurrence. We also noted a reduction in tumor stem cell characteristics, accompanied by an increase in H3K9ac, SP1, and MGMT levels, underscoring the potential role of H3K9ac in tumor relapse following TMZ therapy. CONCLUSIONS: The increase in H3K9ac appears to enhance the recruitment of the transcription factor SP1 to its binding sites within the MGMT locus, consequently upregulating MGMT expression and driving TMZ resistance in GBM.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Histonas , Multiômica , Processamento de Proteína Pós-Traducional , Fator de Transcrição Sp1
2.
Cancer Lett ; 588: 216768, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38453045

RESUMO

Hedgehog signaling is activated in response to liver injury, and modulates organogenesis. However, the role of non-canonical hedgehog activation via TGF-ß1/SMAD3 in hepatic carcinogenesis is poorly understood. TGF-ß1/SMAD3-mediated non-canonical activation was found in approximately half of GLI2-positive hepatocellular carcinoma (HCC), and two new GLI2 isoforms with transactivating activity were identified. Phospho-SMAD3 interacted with active GLI2 isoforms to transactivate downstream genes in modulation of stemness, epithelial-mesenchymal transition, chemo-resistance and metastasis in poorly-differentiated hepatoma cells. Non-canonical activation of hedgehog signaling was confirmed in a transgenic HBV-associated HCC mouse model. Inhibition of TGF-ß/SMAD3 signaling reduced lung metastasis in a mouse in situ hepatic xenograft model. In another cohort of 55 HCC patients, subjects with high GLI2 expression had a shorter disease-free survival than those with low expression. Moreover, co-positivity of GLI2 with SMAD3 was observed in 87.5% of relapsed HCC patients with high GLI2 expression, indicating an increased risk of post-resection recurrence of HCC. The findings underscore that suppressing the non-canonical hedgehog signaling pathway may confer a potential strategy in the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/patologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , Transdução de Sinais , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo
3.
Anim Biosci ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419531

RESUMO

Objective: This study was conducted to investigate the effect of slaughter age on carcass traits, meat quality, and the relative mRNA levels of lipid metabolism-related genes in different muscles of Taihang black goats. Methods: In this study, the triceps brachii (TB), longissimus dorsi (LD) and gluteus (GL) muscles of 15 grazing Taihang black goats slaughtered at the age of 2, 3, and 4(designated as 2-year-old, 3-year-old, and 4-year-old, respectively) were collected. The differences in carcass shape, meat quality, amino acid composition and lipid metabolism gene expression among Taihang black goats of different ages and from different plant parts were compared. Results: Compared with goats at other ages, goats slaughtered at the age of 4 had greater live and carcass weights, meat weights, bone weights and skin areas (P<0.05). LD in the 4-years-old had the lowest cooking loss and moisture content. The content of crude protein in 2-year-old was significantly greater than that in the other muscles. The highest fat content was in LD, followed by TB, for goats slaughtered at the age of 4. Eight out of 9 essential amino acids had higher content in the TB compared with other muscles, regardless of age. The total essential amino acid content was highest in the 4-year-old and lowest in the GL muscle at the age of 3. The SREBP-1c and ATGL genes were significantly more abundant in the TB muscle than in the other muscles for goats slaughtered at the age of 2. At the the age of 4, the ATGL and PPARγ genes were significantly more abundant in the GL than in the LD, while the FAS genes were significantly less abundant in the GL than in the other muscles. Similarly, compared with those in goats of other ages, the relative mRNA expression levels of the FAS and H-FABP genes in goats slaughtered at the age of 4 were the highest, and the relative mRNA expression of the PPARγ gene was the lowest (P<0.05). The relative mRNA expression of the H-FABP and FAS genes was positively correlated with the intramuscular fat (IMF) content, while the relative mRNA expression levels of the PPARγ and ATGL genes was negatively correlated with the IMF content. Conclusion: Overall, a better nutritional value was obtained for TB from 4-year-old goats, in which the total essential amino acid and fat contents were greater than those of other muscles. The comprehensive action of lipid metabolism genes was consistent with that of the IMF content, among which the FAS, H-FABP, PPARγ and ATGL genes had positive and negative effects on the process of IMF deposition in Taihang black goats.

4.
Nanoscale ; 16(9): 4826-4840, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38312054

RESUMO

The temperature-controlled relationship between the mechanical properties and deformation mechanism of tantalum (Ta) enables the extension of its application potential in various areas of life, including energy and electronics industries. In this work, the microstructure and deformation behavior of nanocrystalline superior-deformed Ta have been investigated in a wide temperature range. The structural analysis revealed that the high-performance Ta consists of several different substructures, with an average size of about 20 nm. The tensile behavior of nanocrystalline Ta (NC-Ta) was analysed and simulated at various temperatures from 100 K to 1500 K by the molecular dynamics (MD) method. It is shown that with increasing average grain size, the elastic modulus of NC-Ta linearly increases, and the impact factor reaches a value close to 1.8. The critical grain size, as obtained from the Hall-Petch relationship, was found to be about 8.2 nm. For larger grains, the flow stress follows the Hall-Petch relationship, and the thermal behavior of twin bands determines the deformation process. On the other hand, when grains are smaller than the critical size, the relationship between the flow stress and structure transforms into the inverse Hall-Petch relationship, and the deformation mechanism is controlled by grain rotation, boundary sliding or atomic migration. The results of numerical simulations revealed that temperature significantly affects the critical grain size for the plastic deformation of NC-Ta. In addition, it is demonstrated that both the elastic modulus and dislocation density decrease with increasing temperature. These findings provide guidance for the design of polycrystalline tantalum materials with tailored mechanical properties for specific industrial applications such as heat exchangers and condensers in aerospace, bone substitutes in biomedicine, and surface acoustic wave filters or capacitors in electronics.

5.
Dig Liver Dis ; 56(1): 176-186, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37230858

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly vascularized tumor with a poor prognosis. Novel vascular-related therapeutic targets and prognostic markers remain urgently needed. AIMS: To investigate the role and mechanism of CLCA1 in hepatocellular carcinoma. METHODS: Immunofluorescence, Co-immunoprecipitation and rescue experiment were used to determine the specific mechanisms of CLCA1. Chemosensitivity assay was used to measure the impact of CLCA1 on Sorafenib. RESULTS: CLCA1 was dramatically downregulated in hepatocellular carcinoma cell lines and tissues. Ectopic expression of CLCA1 induced cell apoptosis and G0/G1 phase arrest while suppressed cell growth, inhibited migration and invasion, reversal of epithelial mesenchymal transition in vitro and reduced xenograft tumor growth in vivo. Mechanistically, CLCA1 could co-localize and interact with TGFB1, thereby suppressing HCC angiogenesis through the TGFB1/SMAD/VEGF signaling cascade in vitro and in vivo. Moreover, CLCA1 also enhanced the sensitivity of HCC cells to the first-line targeted therapy, Sorafenib. CONCLUSION: CLCA1 sensitizes HCC cells to Sorafenib and suppresses hepatocellular carcinoma angiogenesis through downregulating TGFB1 signaling cascade. This newly identified CLCA1 signaling pathway may help guide the anti-angiogenesis therapies for hepatocellular carcinoma. We also support the possibility of CLCA1 being a prognostic biomarker for hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Fator de Crescimento Transformador beta1/metabolismo , Canais de Cloreto/uso terapêutico
6.
Anal Bioanal Chem ; 416(11): 2691-2697, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38133669

RESUMO

With the expansion of ICP-MS application into the field of bioanalysis, there is an urgent need for novel element tags today. Here, we report the design of a dual-element Ir-Eu tag, opening the door to simultaneous fluorescent imaging and ICP-MS quantification. The ratio of 153Eu/193Ir may serve as a precision control of the labeling process, allowing internal validation of the quantitative results obtained. As for SIRPα and its host cell analysis exemplified here, the Ir-Eu tag demonstrated superior figures of ICP-MS quantification with the LOD (3σ) down to 0.5 (153Eu) and 1.1 (193Ir) pM SIRPα and 220 (153Eu) and 830 (193Ir) RAW264.7 cells more than 130 times more sensitive compared with the LOD (3σ) of 65.2 pM SIRPα at 612 nm using fluorometry. Not limited to these demonstrations, we believe that the design ideas of the dual Ir-Eu tags should be applicable to various cases of bioanalysis when dual optical profiling and ICP-MS quantification are indispensable.


Assuntos
Espectrometria de Massas , Fluorometria , Espectrometria de Massas/métodos , Análise Espectral , Irídio/química , Európio/química , Corantes Fluorescentes/química , Animais , Camundongos , Receptores Imunológicos/análise , Receptores Imunológicos/química , Células RAW 264.7
7.
Plants (Basel) ; 12(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38068706

RESUMO

Cotton (Gossypium spp. L.) is a major origin of natural fiber, and is projected at 117 million bales worldwide for 2021/22. A variety of biotic and abiotic stresses have considerable negative impacts on cotton. The significantly decreased applications of chemical insecticidal sprays in the agro-ecosystem have greatly affected the biodiversity and dynamics of primary and secondary insects. Various control measures were taken around the globe to increase production costs. Temperature, drought, and salinity, and biotic stresses such as bacteria, viruses, fungi, nematodes, insects, and mites cause substantial losses to cotton crops. Here, we summarize a number of biotic and abiotic stresses upsetting Bt cotton crop with present and future biotechnology solution strategies that include a refuge strategy, multi-gene pyramiding, the release of sterile insects, seed mixing, RNAi, CRISPR/Cas9, biotic signaling, and the use of bioagents. Surveillance of insect resistance, monitoring of grower compliance, and implementation of remedial actions can lead to the sustainable use of cotton across the globe.

8.
BMC Infect Dis ; 23(1): 742, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904093

RESUMO

BACKGROUND: Hydrocephalus is a frequent complication of tuberculous meningitis (TBM), and ventriculoperitoneal shunt (VPS) has been shown to improve short-term prognosis for patients with TBM-associated hydrocephalus. However, questions remain about long-term prognosis and shunt-related complications. This study aims to provide a comprehensive assessment of both long-term prognosis and shunt-related complications in patients with TBM-induced hydrocephalus who have undergone VPS treatment. METHODS: This retrospective study analyzed the clinical data of TBM patients with hydrocephalus treated with VPS at Peking Union Medical College Hospital between December 1999 and February 2023. Both short-term outcomes at discharge and long-term outcomes during follow-up were examined. Prognosis and shunt-related complications were assessed using the modified Rankin Scale (mRS) and the Activity of Daily Living (ADL) score to evaluate neurological function and autonomic living ability, respectively. RESULTS: A total of 14 patients with TBM-associated hydrocephalus were included in this study. Of these, 92.9% (13/14) exhibited favorable short-term outcomes, while 57.1% (8/14) showed positive long-term outcomes. Initial results indicated 6 complete recoveries (CR), 7 partial recoveries (PR), and 1 treatment failure. No catheter-related complications were observed initially. Long-term results included 4 CRs, 4 PRs, and 6 treatment failures. A variety of shunt surgery-related complications were noted, including three instances of catheter obstruction, one of incision infection, one of catheter-related infection, one of acute cerebral infarction, and one of transient peritoneal irritation accompanied by diarrhea. CONCLUSIONS: VPS appears to be an effective and well-tolerated treatment for TBM-associated hydrocephalus, efficiently alleviating acute intracranial hypertension. Nonetheless, continuous long-term monitoring and proactive management are essential to mitigate the risk of catheter-related complications.


Assuntos
Hidrocefalia , Tuberculose Meníngea , Humanos , Derivação Ventriculoperitoneal/efeitos adversos , Estudos Retrospectivos , Tuberculose Meníngea/complicações , Tuberculose Meníngea/cirurgia , Hidrocefalia/etiologia , Hidrocefalia/cirurgia , Prognóstico , Resultado do Tratamento
9.
J Nanobiotechnology ; 21(1): 396, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37904204

RESUMO

BACKGROUND: This systematic review and meta-analysis aimed to evaluate the efficacy of engineered extracellular vesicles (EEVs) in the treatment of ischemic stroke (IS) in preclinical studies and to compare them with natural extracellular vesicles (EVs). The systematic review provides an up-to-date overview of the current state of the literature on the use of EEVs for IS and informs future research in this area. METHODS: We searched PubMed, EMBASE, Web of Science, Cochrane Library, and Scopus databases for peer-reviewed preclinical studies on the therapeutic effect of EEVs on IS.Databases ranged from the inception to August 1, 2023. The outcome measures included infarct volumes, neurological scores, behavioral scores, apoptosis rates, numbers of neurons, and levels of IL-1ß, IL-6, and TNF-α. The CAMARADES checklist was used to assess the quality and bias risks of the studies. All statistical analyses were performed using RevMan 5.4 software. RESULTS: A total of 28 studies involving 1760 animals met the inclusion criteria. The results of the meta-analysis showed that compared to natural EVs, EEVs reduced infarct volume (percentage: SMD = -2.33, 95% CI: -2.92, -1.73; size: SMD = -2.36, 95% CI: -4.09, -0.63), improved neurological scores (mNSS: SMD = -1.78, 95% CI: -2.39, -1.17; Zea Longa: SMD = -2.75, 95% CI: -3.79, -1.71), promoted behavioral recovery (rotarod test: SMD = 2.50, 95% CI: 1.81, 3.18; grid-walking test: SMD = -3.45, 95% CI: -5.15, -1.75; adhesive removal test: SMD = -2.60, 95% CI: -4.27, -0.93; morris water maze test: SMD = -3.91, 95% CI: -7.03, -0.79), and reduced the release of proinflammatory factors (IL-1ß: SMD = -2.02, 95% CI: -2.77, -1.27; IL-6: SMD = -3.01, 95% CI: -4.47, -1.55; TNF-α: SMD = -2.72, 95% CI: -4.30, -1.13), increasing the number of neurons (apoptosis rate: SMD = -2.24, 95% CI: -3.32, -1.16; the number of neurons: SMD = 3.70, 95% CI: 2.44, 4.96). The funnel plots for the two main outcome measures were asymmetric, indicating publication bias. The median score on the CAMARADES checklist was 7 points (IQR: 6-9). CONCLUSIONS: This meta-analysis shows that EEVs are superior to natural EVs for the treatment of IS. However, research in this field is still at an early stage, and more research is needed to fully understand the potential therapeutic mechanism of EEVs and their potential use in the treatment of IS. PROSPERO REGISTRATION NUMBER: CRD42022368744.


Assuntos
Vesículas Extracelulares , AVC Isquêmico , Animais , AVC Isquêmico/terapia , Interleucina-6 , Fator de Necrose Tumoral alfa , Infarto
10.
Front Plant Sci ; 14: 1189490, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719229

RESUMO

Introduction: Upland cotton (Gossypium hirsutum) is the main source of natural fiber in the global textile industry, and thus its fiber quality and yield are important parameters. In this study, comparative transcriptomics was used to analyze differentially expressed genes (DEGs) due to its ability to effectively screen candidate genes during the developmental stages of cotton fiber. However, research using this method is limited, particularly on fiber development. The aim of this study was to uncover the molecular mechanisms underlying the whole period of fiber development and the differences in transcriptional levels. Methods: Comparative transcriptomes are used to analyze transcriptome data and to screen for differentially expressed genes. STEM and WGCNA were used to screen for key genes involved in fiber development. qRT-PCR was performed to verify gene expression of selected DEGs and hub genes. Results: Two accessions of upland cotton with extreme phenotypic differences, namely EZ60 and ZR014121, were used to carry out RNA sequencing (RNA-seq) on fiber samples from different fiber development stages. The results identified 704, 376, 141, 269, 761, and 586 genes that were upregulated, and 1,052, 476, 355, 259, 702, and 847 genes that were downregulated at 0, 5, 10, 15, 20, and 25 days post anthesis, respectively. Similar expression patterns of DEGs were monitored using short time-series expression miner (STEM) analysis, and associated pathways of DEGs within profiles were investigated. In addition, weighted gene co-expression network analysis (WGCNA) identified five key modules in fiber development and screened 20 hub genes involved in the development of fibers. Discussion: Through the annotation of the genes, it was found that the excessive expression of resistance-related genes in the early fiber development stages affects the fiber yield, whereas the sustained expression of cell elongation-related genes is critical for long fibers. This study provides new information that can be used to improve fibers in newly developed upland cotton genotypes.

11.
BMC Biol ; 21(1): 165, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525156

RESUMO

BACKGROUND: The development of cotton fiber is regulated by the orchestrated binding of regulatory proteins to cis-regulatory elements associated with developmental genes. The cis-trans regulatory dynamics occurred throughout the course of cotton fiber development are elusive. Here we generated genome-wide high-resolution DNase I hypersensitive sites (DHSs) maps to understand the regulatory mechanisms of cotton ovule and fiber development. RESULTS: We generated DNase I hypersensitive site (DHS) profiles from cotton ovules at 0 and 3 days post anthesis (DPA) and fibers at 8, 12, 15, and 18 DPA. We obtained a total of 1185 million reads and identified a total of 199,351 DHSs through ~ 30% unique mapping reads. It should be noted that more than half of DNase-seq reads mapped multiple genome locations and were not analyzed in order to achieve a high specificity of peak profile and to avoid bias from repetitive genomic regions. Distinct chromatin accessibilities were observed in the ovules (0 and 3 DPA) compared to the fiber elongation stages (8, 12, 15, and 18 DPA). Besides, the chromatin accessibility during ovules was particularly elevated in genomic regions enriched with transposable elements (TEs) and genes in TE-enriched regions were involved in ovule cell division. We analyzed cis-regulatory modules and revealed the influence of hormones on fiber development from the regulatory divergence of transcription factor (TF) motifs. Finally, we constructed a reliable regulatory network of TFs related to ovule and fiber development based on chromatin accessibility and gene co-expression network. From this network, we discovered a novel TF, WRKY46, which may shape fiber development by regulating the lignin content. CONCLUSIONS: Our results not only reveal the contribution of TEs in fiber development, but also predict and validate the TFs related to fiber development, which will benefit the research of cotton fiber molecular breeding.


Assuntos
Cromatina , Fatores de Transcrição , Cromatina/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Redes Reguladoras de Genes , Desoxirribonuclease I/genética
12.
Plants (Basel) ; 12(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37514228

RESUMO

Cotton is an important natural fiber crop. The RF2 gene family is a member of the bZIP transcription factor superfamily, which plays an important role in plant resistance to environmental stresses. In this paper, the RF2 gene family of four cotton species was analyzed genome-wide, and the key gene RF2-32 was cloned for functional verification. A total of 113 RF2 genes were identified in the four cotton species, and the RF2 family was relatively conserved during the evolution of cotton. Chromosome mapping and collinear analysis indicated that fragment replication was the main expansion mode of RF2 gene family during evolution. Cis-element analysis showed that there were many elements related to light response, hormone response and abiotic stress response in the promoters of RF2 genes. The transcriptome and qRT-PCR analysis of RF2 family genes in upland cotton showed that RF2 family genes responded to salt stress and drought stress. GhRF2-32 protein was localized in the cell nucleus. Silencing the GhRF2-32 gene showed less leaf wilting and increased total antioxidant capacity under drought and salt stress, decreased malondialdehyde content and increased drought and salt tolerance. This study revealed the evolutionary and functional diversity of the RF2 gene family, which laid a foundation for the further study of stress-resistant genes in cotton.

13.
J Burn Care Res ; 44(6): 1355-1364, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37387307

RESUMO

Severe facial burns may cause scarring problems and affect living quality of patients. With the advent of 3D facemasks, it is being used to treat facial scars; however, its efficacy must be confirmed by adequate studies. A retrospective analysis of 26 patients who visited rehabilitation outpatient clinic from 2017 to 2022. Patients were separated into two groups based on the time to healing (TTH) following burn injury: early healing group (TTH ≤ 21 days) and late healing group (TTH > 21 days). To compare treatment outcomes and differences between the two groups, 3D facemask application was assessed using the Vancouver Scar Scale (VSS), patient satisfaction, and complications. In both groups, there were significant improvements in the total VSS scores (P < .01) and each VSS subscore (P < .01). These scar characteristics improved over time as the treatment progressed. Compared with the late healing group, the early healing group had more obvious effects on improving scar pigmentation (P < .05) and vascularity (P < .05) at similar assessment time points after burns. At the last assessment, there was a significant difference in total VSS scores between groups (P = .009). For the early and late healing groups, respectively, the mean gradient value (SE) of the total VSS scores was 1.550 (0.373) and 1.283 (0.224) over the course of the treatment periods. 3D facemasks are effective in the rehabilitation of facial scars caused by burns, which should be used for prevention and treatment in the initial stages of scar development.


Assuntos
Queimaduras , Cicatriz Hipertrófica , Humanos , Cicatriz/etiologia , Estudos Retrospectivos , Pacientes Ambulatoriais , Máscaras/efeitos adversos , Queimaduras/terapia , Resultado do Tratamento , Cicatriz Hipertrófica/etiologia
14.
RSC Adv ; 13(23): 15737-15746, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37235106

RESUMO

The trade-off effect between strength and fracture toughness typically observed in composites is challenging for the design and development of novel materials. An amorphous state can impede the trade-off effect of strength and fracture toughness, improving the mechanical properties of composites. Choosing the typical tungsten carbide-cobalt (WC-Co) cemented carbides as examples, where the amorphous binder phase was found, the impact of binder phase Co on the mechanical properties was further investigated by molecular dynamics (MD) simulations. The mechanical behavior and microstructure evolution of the WC-Co composite in the uniaxial compression and tensile processes were studied at different temperatures. The results showed that Young's modulus and ultimate compressive/tensile strengths were higher in WC-Co with amorphous Co, and the ultimate compressive/tensile strengths increased by about 11-27% compared to the samples with crystalline Co. Amorphous Co not only restricts the propagation of voids and cracks but also delays fractures. The relationship between temperatures and deformation mechanisms was also investigated, in which the tendency of strength to decrease with increasing temperature was clarified.

15.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239883

RESUMO

Cotton (Gossypium spp.) is the fifth largest oil crop in the world, and cottonseed provides abundant vegetable oil resources and industrial bioenergy fuels for people; therefore, it is of practical significance to increase the oil content of cotton seeds for improving the oil yield and economic benefits of planting cotton. Long-chain acyl-coenzyme A (CoA) synthetase (LACS) capable of catalyzing the formation of acyl-CoAs from free fatty acids has been proven to significantly participate in lipid metabolism, of which whole-genome identification and functional characterization of the gene family have not yet been comprehensively analyzed in cotton. In this study, a total of sixty-five LACS genes were confirmed in two diploid and two tetraploid Gossypium species, which were divided into six subgroups based on phylogenetic relationships with twenty-one other plants. An analysis of protein motif and genomic organizations displayed structural and functional conservation within the same group but diverged among the different group. Gene duplication relationship analysis illustrates the LACS gene family in large scale expansion through WGDs/segmental duplications. The overall Ka/Ks ratio indicated the intense purifying selection of LACS genes in four cotton species during evolution. The LACS genes promoter elements contain numerous light response cis-elements associated with fatty acids synthesis and catabolism. In addition, the expression of almost all GhLACS genes in high seed oil were higher compared to those in low seed oil. We proposed LACS gene models and shed light on their functional roles in lipid metabolism, demonstrating their engineering potential for modulating TAG synthesis in cotton, and the genetic engineering of cottonseed oil provides a theoretical basis.


Assuntos
Genoma de Planta , Gossypium , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Família Multigênica , Filogenia , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo
16.
Front Plant Sci ; 14: 1127760, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008510

RESUMO

Cotton is an important fiber crop. The cotton fiber is an extremely long trichome that develops from the epidermis of an ovule. The trichome is a general and multi-function plant organ, and trichome birefringence-like (TBL) genes are related to trichome development. At the genome-wide scale, we identified TBLs in four cotton species, comprising two cultivated tetraploids (Gossypium hirsutum and G. barbadense) and two ancestral diploids (G. arboreum and G. raimondii). Phylogenetic analysis showed that the TBL genes clustered into six groups. We focused on GH_D02G1759 in group IV because it was located in a lint percentage-related quantitative trait locus. In addition, we used transcriptome profiling to characterize the role of TBLs in group IV in fiber development. The overexpression of GH_D02G1759 in Arabidopsis thaliana resulted in more trichomes on the stems, thereby confirming its function in fiber development. Moreover, the potential interaction network was constructed based on the co-expression network, and it was found that GH_D02G1759 may interact with several genes to regulate fiber development. These findings expand our knowledge of TBL family members and provide new insights for cotton molecular breeding.

17.
Theor Appl Genet ; 136(3): 48, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36912959

RESUMO

KEY MESSAGE: The fiber length-related qFL-A12-5 identified in CSSLs introgressed from Gossypium barbadense into Gossypium hirsutum was fine-mapped to an 18.8 kb region on chromosome A12, leading to the identification of the GhTPR gene as a potential regulator of cotton fiber length. Fiber length is a key determinant of fiber quality in cotton, and it is a key target of artificial selection for breeding and domestication. Although many fiber length-related quantitative trait loci have been identified, there are few reports on their fine mapping or candidate gene validation, thus hampering efforts to understand the mechanistic basis of cotton fiber development. Our previous study identified the qFL-A12-5 associated with superior fiber quality on chromosome A12 in the chromosome segment substitution line (CSSL) MBI7747 (BC4F3:5). A single segment substitution line (CSSL-106) screened from BC6F2 was backcrossed to construct a larger segregation population with its recurrent parent CCRI45, thus enabling the fine mapping of 2852 BC7F2 individuals using denser simple sequence repeat markers to narrow the qFL-A12-5 to an 18.8 kb region of the genome, in which six annotated genes were identified in Gossypium hirsutum. Quantitative real-time PCR and comparative analyses led to the identification of GH_A12G2192 (GhTPR) encoding a tetratricopeptide repeat-like superfamily protein as a promising candidate gene for qFL-A12-5. A comparative analysis of the protein-coding regions of GhTPR among Hai1, MBI7747, and CCRI45 revealed two non-synonymous mutations. The overexpression of GhTPR resulted in longer roots in Arabidopsis, suggesting that GhTPR may regulate cotton fiber development. These results provide a foundation for future efforts to improve cotton fiber length.


Assuntos
Gossypium , Locos de Características Quantitativas , Humanos , Gossypium/genética , Mapeamento Cromossômico/métodos , Fenótipo , Melhoramento Vegetal , Fibra de Algodão , Estudos de Associação Genética
18.
Wounds ; 35(3): 47-52, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36917783

RESUMO

INTRODUCTION: Dead space is an important risk factor for poor wound healing; therefore, it is important to effectively fill deep dead space through individualized tissue flap design during the repair of complex wounds. Adipofascial flaps have yielded good results in the repair of deep dead space wounds. OBJECTIVE: The authors evaluated the efficacy of 3 kinds of adipofascial flaps to repair deep dead space wounds. METHODS: From January 2019 to January 2022, 15 patients with complicated wounds accompanied by deep dead space underwent repair via 1 of 3 kinds of adipofascial flaps, and the clinical efficacy was observed. RESULTS: All 15 transplanted adipofascial flaps exhibited complete survival, and within a mean follow-up of 14.7 months, both the donor and recipient sites had successfully healed. CONCLUSION: The traditional pedicled adipofascial flap was used to repair single deep dead space wounds, and pedicled perforator adipofascial extension flaps or layered fasciocutaneous flaps were used on compound tissue defect wounds, thus providing a relatively simple, safe, and effective method to repair a small area of tissue defect with deep dead space wounds.


Assuntos
Retalho Perfurante , Procedimentos de Cirurgia Plástica , Lesões dos Tecidos Moles , Humanos , Transplante de Pele , Lesões dos Tecidos Moles/cirurgia , Retalhos Cirúrgicos , Resultado do Tratamento , Retalho Perfurante/transplante
19.
J Clin Transl Hepatol ; 11(3): 560-571, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36969888

RESUMO

Background and Aims: Hepatectomy is an effective treatment for selected patients with large hepatocellular carcinoma (HCC). This study aimed to develop a nomogram incorporating non-tumoral liver volume (non-TLV) and liver function markers to predict the patients' overall survival (OS) and disease-free survival (DFS). Methods: Data of 198 consecutive large HCC patients who underwent hepatectomy at the Zhongshan Hospital Xiamen University were collected. Another 68 patients from the Mengchao Hepatobiliary Surgery Hospital served as an external validation cohort. The nomograms were developed based on the independent prognostic factors screened by multivariate Cox regression analyses. Concordance index (C-index), calibration curves, and time-dependent receiver operating characteristic (ROC) curves were used to measure the discrimination and predictive accuracy of the models. Results: High HBV DNA level, low non-TLV/ICG, vascular invasion, and a poorly differentiated tumor were confirmed as independent risk factors for both OS and DFS. The model established in this study predicted 5-year post-operative survival and DFS in good agreement with the actual observation confirmed by the calibration curves. The C-indexes of the nomograms in predicting OS and DFS were 0.812 and 0.823 in the training cohort, 0.821 and 0.846 in the internal validation cohort, and 0.724 and 0.755 in the external validation cohort. The areas under the ROC curves (AUCs) of nomograms for predicted OS and DFS at 1, 3, and 5 year were 0.85, 0.86, 0.83 and 0.76, 0.76, 0.63, respectively. Conclusions: Nomograms with non-TLV/ICG predicted the prognosis of single large HCC patients accurately and effectively.

20.
Food Res Int ; 165: 112516, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869517

RESUMO

Compared with traditional staple crops, foxtail millet grain is rich in nutrition and beneficial to human health. Foxtail millet is also tolerance to various abiotic stresses, including drought, making it a good plant for growing in barren land. The study on the composition of metabolites and its dynamics changes during grain development is helpful to understand the process of foxtail millet grain formation. In our study, metabolic and transcriptional analysis were used to uncover the metabolic processes that could influence grain filling in foxtail millet. A total of 2104 known metabolites, belonging to 14 categories, were identified during grain filling. Functional analysis of DAMs and DEGs revealed a stage-specific metabolic properties in foxtail millet grain filling. Some important metabolic processes, such as flavonoid biosynthesis, glutathione metabolism, linoleic acid metabolism, starch and sucrose metabolism and valine, leucine and isoleucine biosynthesis were co-mapped for DEGs and DAMs. Thus, we constructed a gene-metabolite regulatory network of these metabolic pathways to explain their potential functions during grain filling. Our study showed the important metabolic processes during grain filling and focused on the dynamic changes of related metabolites and genes at different stages, which provided a reference for us to better understand and improve foxtail millet grain development and yield.


Assuntos
Setaria (Planta) , Humanos , Metaboloma , Grão Comestível , Produtos Agrícolas , Metabolismo dos Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...